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A LOCAL PROJECTION OPERATOR 
FOR QUADRILATERAL FINITE ELEMENTS 

V. GIRAULT 

ABSTRACT. This note studies the approximation error of a local projection op- 
erator on polynomials of total degree k defined on quadrilaterals. Among other 
applications, this projection operator permits to derive easily error estimates for 
quadrature formulas. 

1. INTRODUCTION 

Let T denote a convex and nondegenerate quadrilateral (i.e., not reduced 
to a triangle) and let k be a nonnegative integer. We denote by Pk the set of 
polynomials in two variables of total degree k, i.e., spanned by all products of 
the form x<x42 with 0 < ii < k, 0 < i2< k and il + i2< k. Then, for any 
function u in L1 (T), we define its local projection 4T(U) E Pk by 

(1) Vr E Pk, j 4 (u)rdx = urdx. 

Obviously, (1) defines uniquely IT(U), but deriving error estimates for this 
operator is not altogether straightforward, because the polynomial space Pk iS 
well adapted to triangular finite elements but not to quadrilateral finite elements. 
Indeed, in the case of quadrilateral finite elements, the polynomials are first 
defined on the reference square T = [0, 1]2 in the reference (xI, x2)-space and 
they belong to the space Qk of polynomials of degree k in each variable, i.e., 

11 .2 spanned by all products of the form x'<x2 with 0 < ii < k and 0 < i2 < k. 
Then they are transformed into functions (generally, not polynomials) defined 
on T by a transformation that maps T onto T. More precisely, as T is 
convex and nondegenerate, there exists an invertible bilinear mapping FT that 
maps T onto T (cf. Ciarlet [2]); then we define the function space @k(T) by 

@lk(T) = {q = q ? Fj ; Vq E Qk} 

It turns out that this is the "good" space for interpolating functions on quadri- 
laterals because, unlike the space Pk, it yields optimal interpolation error esti- 
mates. We refer to Ciarlet [2] for a study of these quadrilateral finite element 
spaces and isoparametric finite element spaces in general. 
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However, because Ik is a projection operator, and thus minimizes the L2 
norm, it does satisfy optimal error estimates. To my knowledge, the first L2 
estimate for this operator was established in Girault and Raviart [5], following 
an original idea of C. Bernardi, where it was applied to analyze the @lk - Pk-1 
element for the Stokes problem. The purpose of the present paper is to extend 
the above result first to LP, and next to W1 P estimates. As an application, 
we shall use this projection operator to show in particular that, when k = 1, 
the four-point quadrature rule is of order one, a result very difficult to establish 
otherwise on an arbitrary quadrilateral (cf. Ciarlet and Raviart [3] and Raviart 
[8]). 

We conclude this introduction by recalling some notations and properties of 
Sobolev spaces that we shall use further on; they can be found in Adams [1] or 
Necas [7]. Let Q denote a bounded and connected open subset of R2 with a 
Lipschitz continuous boundary. For any nonnegative integer k and number p 
with 1 < p < o0, recall the standard Sobolev space 

Wk,P(Q) = {V E LP(Q); OaV e LP(Q) for 0 < ?al < k}, 
where a denotes any pair of nonnegative integers (aI, a2), OaV = 

IaC1V/aX 1OaX12 and IaI = a1 + a2 . It is a Banach space for the norm 

/V kI = 
l/p 

JVJWk,p(U) =I ZE E Ila'VI1PLp(n) 
\1aJ=? aJ 

with the usual modification when p = oo. When p = 2, this space is denoted 
simply by Hk(Q). We also define the seminorm 

IVIWkp(Q) l l Z 11 VLP(Q)) 

IaJ=k 

By interpolating between two consecutive values of k, we can extend the def- 
inition of Sobolev spaces to noninteger values of k (cf. Lions and Magenes 
[6]). 

Finally, we recall a fundamental result on polynomial interpolation. On 
any bounded domain K, for any nonnegative integers k and 1, the polyno- 
mial space Pk is contained in W ,P(K) and we can define the quotient space 
Wl P(K)/Pk, which is also a Banach space equipped with the quotient norm 

Vv e Wl"P(K)/Pk, 1v1IIWI P(K)/Pk = inf llv + rll W,P(K). 
rEPk 

This quotient space has the following property proved by Deny and Lions [4] 
(cf. also Necas [7]). 

Theorem 1. Assume that K is a bounded and connected open set of 12 with 
a Lipschitz continuous boundary. For each integer k > 0 and number p with 
1 < p < o0, there exists a constant C such that 

V,V e Wk+l 'P(K)/Pk, |V ||Wk+1p(K)/Pk < CIV I Wk+1 P(K)- 

2. AN LP-ESTIMATE 

To simplify the discussion and avoid the technical difficulties related to 
curved boundaries, we assume from now on that Q is a polygonal domain. 
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a2 

FIGURE 1 

Let h be .a parameter that will tend to zero, and for each value of h, let 8; 
be a quadrangulation of Q~ made of convex and nondegenerate quadrilaterals, 
with diameter bounded by h. Let T be one of these quadrilaterals, let ai 
be its vertices, for 1 < i < 4, and let S1 denote its subtriangle with vertices 
ai_1, ai, ai+l , the indices being n-umbered modulo four, as in Figure 1. Let hi 
be the diameter of 5, and Pi the diameter of its inscribed circle. We set 

T ~ ~ ~ ~ ~ ~ ~~h 

hT ls<ulp hi, PT 2 1 m<4 Pi and UT =-p 

Clearly, hT is the diameter of T and cIT iS a measure of the nondegeneracy 
of T. 

In order to study 4k, it will be useful to introduce the reference unit triangle 

~~~~~~~~~~~~~~~~~~~ A 

affine invertible mapping 
FS(X) = BSX +b, 

defined by F5(ai~) = ai for i = 1, 2, 4. (For strictly consistent notations, we 
should denote this mapping by ES, (X), but for the sake of simplicity, we agree 
to drop the index on S .) AS T iS nondegenerate, this mapping is unique and it 
maps S1 onto Si . Furthermore, the matrix BS satisfies the following bounds: 

I det(Bs)I = 2 meas(S1 ) and 78P2 < I det(Bs)I ? -yhT. 
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Then we set S3 = Fl1 (S3) and we associate with T an auxiliary reference 
quadrilateral, T', which generally does not coincide with the reference square 
T, but is convex because T is convex: 

(2) T=SiUS3 =s1-(T). 

In particular, we set a3 = Fl1 (a3), and the diameter hF of T satisfies 

h? < IIBs IIhT < 2V2aT 

As T is a convex and nondegenerate quadrilateral, there exists a (unique) in- 
vertible bilinear mapping FT that maps the unit square T onto T and such 
that for < i < 4, 

Fj(fi) = i, 

where a = (1 1). It is interesting to observe that 

Fs o FT = FT, 

where FT is the bilinear mapping (mentioned in the introduction) satisfying 
ai = FT(ai). Let JT and JT denote respectively the Jacobians of FT and FT; 
we have 

, l= L?(T 2 ls<u p meas (Si ) < 2'3 h2, 
IIJTIIL-(T) =2 sup meas(Sl)? < Ti 

IIJT1IIOO(T)= inf1<1<4meas(SE) < 7(p2 

meas(S1) 4v/3 2 
11 IJII?(j) = sup < UT< 

|D <l ||L<4 meas(ST ) <r 

L~(T) = meas(Si) 4V' 2 

Our first lemma shows that the operator 4T is stable in LP(T) . 

Lemma 2. For any integer k > 0 and any n.umber p with 1 < p < oo, there 

excists a constant C, independent of the geometry of 7', such that 

VU e P(T) |IITU?I (T,) < CATIU L(TT 

Proof. Make the change of variable x = Fs(i) in definition (1). As the mapping 

Fs is affine, we have 

V/r e Pk, |Idet(Bs)IJ(U) U) oFs(k)roFs(k)dx = 0. 

But both the space sok and the operator I4 are invariant by affine transfoa- 
tion, i.e., setting u = u o Fs, we have 

IT(BU) I F= 
- 

U) - k() 

T~~~ 
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Hence, we can write 

Vr E Pk, J4l(IT)O-u)r di = O 
T 

Therefore, choosing r = i(iu) and letting q denote the conjugate exponent of 
p, 1/p+1 /q =1,weobtain 

(3) ~~~~~11 ik (U) 11 2( < II ||IPi I'!(U) ILqj 

But 

III~(a)IILq(T) - IIJTIIL- (T) T T) 

and IT(U) ? FT belongs to Qk, a finite-dimensional space on which all norms 
are equivalent. Hence, there exists a constant C1 which depends only on the 
geometry of T and on the degree k, such that 

| i )| < Cl I ~ {I j q llAu ~ 

< ,11 JFIIL?T 
ll l:111T L()112 k( )IIL2(T 

Therefore, for any real number q, we have 

(4)~ ~ ~ |I ()| < C2C /rlT() I2T 
Substituting (4) into (3), first with q and next with p, we obtain 

- 11 T()IILP(T) < T LP(T) 

Hence, 

IIIT(U)IIL(T) = I det(BS)I1IPIIf!(a)IILP () < C3 (41det(Bs)I"PI IiIIL,p(F) 
-< r CI det (Bs)l /'PI det (Bs)l C_ / 'PIIUIILP(T)*? 

Theorem 3. For any integers k > 0 and / > 0 with 1 < k + 1, and for all 
numbers p with 1 < p < oo, there exists a constant C, independent of the 
geometry of T, such that 

(6) VU E W",P(T), ||u - ITk(u)IIP(T) < Ca1(4IP ) h' IUIWIP(T)- 

Proof. By virtue of Lemma 2, it suffices to consider the case where 1 > 1 . Here 
again, we can write 

IIU - T(U)IILP(T) = I det(Bs)I/PIIi - If(ii)IIP(I). 

But since the operator IR preserves all polynomials in Pk, we have for any r 
T 

in Pk, 

-ik()ii),(F = 11i-r-k(i-r)aL.(T) < l-f r+IIL Tl(ii TI~-~'PT T LPT a-rK~+ IITa-r)I,( 
< (1 + Cl a4) ii - rIILp(') 

where C1 denotes the constant of (5). Therefore, 

(7) ju - 4(u)IILP(T) I I det(Bs)I'lP(l + C16T)IIUIILp(T)/P 4 
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It would be tempting to apply Theorem 1 to the right-hand side of (7), but 
we cannot do it directly here, because T is a variable quadrilateral and the 
constant of Theorem 1 depends upon the geometry of the set. Therefore, we 
must switch to the reference element T. Consider first the case where k = 0 
and which is the only case where Qk and Pk coincide on T, since they both 
consist of constants. Thus, applying Theorem 1 in T, we obtain 

inf RII + rILj( T) ? I I Jij(T) inf I o FT +rII rlL(i) < C211JT1I Il IfU o FwlI p(T 

IC T IIJI? II( J11T II' (T IIDFj II L?(T) IU W1(T). 

Hence, 

(8) IIUIILP(T)/PO ? T Iiiw1 (F) 
We shall extend (8) to any integer k by induction. Assume that for any integer 
j < l - 2, we have 

(9) ||U||LP(T)/? ~< Ca (41p+1)(j+1) lI j 

and let us prove that (9) is valid for j + 1 . We use the decomposition 

pi+ = Pi E Pje + I 

where PIF1 denotes the polynomial space spanned by the j+2 terms xlx -i 

for 0 < i < i + 1 . Therefore, 

r~j+2 IIa+rI LP(T) = rEPj irEP; IIu+r+rIIL( 
rEPj+i= *'e+i l(+*+l1 

owing to the induction hypothesis. But 

/ 1 /p 

lu + r IWJ+P(T) I 1 lO a+cllP I) 

a=+1 1() 

for real constants c> . Hence, 

inf au + r* lwj liiP(lw = - 

Now, (8) yields 

inf||Oa a U+ Ce11 LP (T) < C3aCT!P+lloU aW1 P (T) < C3aCT/ I UlIlWJ+2 P(T). 

Thus, 

11IILp(T)/P <- T r I EWP 2 P() 

and (9) is proved by induction. It remains to substitute (9) into (7) with k = 
j + 1 = 1 and switch back to T: 

||U - IT2(U) I1,P(T) < (1 + C1LT)CUT' IIBS)II'UIwI,P(T), 
thereby proving (6). 0 
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To derive a global estimate from (6), we assume that the family of quadrangu- 
lations T is regular as h tends to zero: there exists a constant a, independent 
of h, such that 

VTeTh, CT < a 

Then we immediately derive the following corollary. 

Corollary 4. Assume that 3 is regular. For any integers k > 0 and 1 > 0 with 
/ < k + 1, and for all numbers p with 1 < p < ox, there exists a constant C, 
independent of h, such that 

Vu E W"IP(Q), IIu - "(u)IILP() < Ch'julwip(Q). 

3. A W1'P-ESTIMATE 

The next lemma shows that 4T is stable in W1 P(T). 

Lemma 5. For any integer k > 0 and any number p with 1 < p < oo, there 
exists a constant C, independent of the geometry of T, such that 

(10) ~~Vu E W' P(T) II()W1PT < CC/p 7jU|W1 IP(T) 

Proof. The result is trivial for k = 0, since IT(u) is a constant. Therefore, we 
can assume that k > 1 and we write 

4kT(U)IW1 P(T) < 4(U) - IT(u)Iw1 P(T) + 14T(U)IW1,P(T) = 4(U) - IT(U)IW1 P(T), 

as IT(u) is a constant. Now switch to the reference element T: 

IT(U) - IT(U)IWIP(T) < IIJT IIL IIDFL- ITL) (T)I(I(u)- 4(u)) ? FT|WlP(T^) 

Since (I(U) - 4(u)) o FT belongs to the finite-dimensional space Qk on T, 
the equivalence of norms yields 

((i (U)-4(u)) I FTI P ? C;ik(4(U) - (u)) ? FTIILP(^ 

< C IIJ' II O(T)OII(U) - iT(U)IILP(T). 

Thus, 

I4T(U) - (U)IW1 P(T) 

<ClliL(T) 11JT IIL/(T) IDF1 IILOO(T) IIT(U) -T(U)IILP(T) 

< 22/p+1 1I 
<GC2aT -11P I(u) 1T(U)IILP(T) 

Hence, 

IkT(U)IWP(T) < Ca2T/ -(IT(U) -UIILP(T) + IIIT(U) -UIILP(T)) 

<T C3WT |Ui WT ,P(T) 

by applying (6) with 1 = 1. o 
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Theorem 6. For any integers k > 0 and 1 < / < k + 1, and for all numbers 
p with 1 < p < oo, there exists a constant C which depends on CT but is 
otherwise independent of the geometry of T, such that 

(l ) VU e WISP(T), |U- iTk(u)|I w P(T) <CT lws(). 

Proof. Since IT preserves all polynomials in Pk, we can write 

Vr e Pk, IU - iT(U)1W1P(T) = Iu - r - iTk(u - r)Iw1,P(T) 

< (1 + Cio6/p7 )Iu - rI W,P(T), 

where C1 is the constant of (10). Now the proof follows the lines of Theorem 
3: 

inf Iu - rlw' P(T) < I det(Bs)I "I'IPBs-1 11 inf Ii - rlwl 
rEPk rEIPk W''P(T)' 

Obviously, 

IuIWl,P(T)/Po = ItIWlP(T) 

and we shall prove an upper bound for Pk by induction. To this end, assume 
that for any integer j < 1 - 2, we have 

( 12) |U|vl 'P(i)1Pj < CAT IP 4|UW'j+1 P(T)- 

Then 

inf ju + rIwj,pj) = inf inf I(i + r*) + rlwlP() 
rE1Pj+i(T r*EPj*+1 rEPj1(T 

C2 UT4P) *ienf l uf + r* I wj+l P(T) 

by the induction hypothesis. But we have shown in the proof of Theorem 3 that 

inf W|u + r Iwj+,P(T) < C3CT l Wj+2,P(T) 

Therefore, 
_ C4(4/p+1)(j+1)j 

W| 'P(T)/Pj+l 4 UTT I WIj P() 

and (12) is proved by induction. Hence, 

IU - IT(u)IW P(T) <C5T/p a(1-)(4/p+1) 1hTUIW,P 
PT IIlPT 

< 
C5C1T(4IP+ )+2/P+7 hT 1 

IUIWI,P(T)- 
As an immediate application, we have the global estimate: 

Corollary 7. Assume that Th is regular. For any integers k > 0 and 1 < 1 < 
k + 1, and for all numbers p with 1 < p < oo, there exists a constant C, 
independent of h, such that 

VU E W"lP(Q), ( IU -uI'(v1P(T)) < Ch'|ulwIwp(Q). 

Finally, by interpolating the estimates of Corollaries 4 and 7 between two 
consecutive values of k, we can extend their results to noninteger values of k: 
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Corollary 8. Assume that 3h is regular. For any integer k > 0 and real number 
s with 0 < s < k + 1, and for all numbers p with 1 < p < x, there exists a 
constant C, independent of h, such that 

Vu E WS"P(Q), IIu - k(u)IIjj(Q) < ChsIIujjws,P(Q)). 
Corollary 9. Assume that Xh is regular. For any integer k > 0 and real number 
s with 1 < s < k + 1, and for all numbers p with 1 < p < oo, there exists a 
constant C, independent of h, such that 

VU E WS P(Q), IU - k(U)IP <(T)) Chsljujjws,P(n) 
TEAh 

4. APPLICATION TO QUADRATURE FORMULAS 

Let k = 1 and consider the standard finite element space 

eh = {0h E W(Q); VT E h, OhIT E @l(T)}. 

In solving elliptic boundary value problems, one often has to calculate terms of 
the form fT Vuh VVh dx with uh and Vh in eh . The exact computation of 
this integral is difficult because the integrand in each T involves fractions in 
two variables. But exact computation is not necessary and we can approximate 
the integral by an appropriate quadrature formula. The most commonly used 
quadrature formula in this case is the two-dimensional extension of the "trape- 
zoidal rule", called the "four-point" rule. We propose to show in this section 
that the error arising from the use of this quadrature formula is comparable to 
the interpolation error of the space eh, namely 0(h). 

For any function f defined and continuous on T, we define the four-point 
quadrature rule by 

(13) 5'4'(f) = Af0, ?) + f(l , O) + f(l , I) + f(O, 0)) 
Then, observing that 

f dx= JTf o FTdX, 
TT 

we define for any continuous function f on T, the quadrature formula 

(14) 594,T (f) = 54 (JTfoFT). 

Now, assume that the solution u of the problem we want to solve belongs 
to H2(Q) . Then it is continuous in Q and we can define first IT(U) in each 
T, which is the classical interpolation operator in @l (T) defined by (cf. Ciarlet 
[2]) 

IT(u)(ai) = u(ai) for 1 < i < 4. 

After this, we define Ih(U) E eh by 

VT eSh, Ih(U)IT = IT(UIT) . 

The error arising from the integration formula (13), (14) involves in particular 
the difference 

J V(IT(U)) VVh dx - 54, T(V(IT(u)) * VVh), 
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and this difference must be bounded in terms of Ilvh IHI(T) . The next theorem 
establishes a slightly more general result. 

Theorem 10. Assume that the quadrangulation 7h is regular. For any number 
p with 1 < p < oo, there exists a constant C such that for all u in W2,P(Q) 
the following bound holds: 

VVh E eh, 

V V(Ih W) 
) 
V Vh dx E 4 T (V(IT W)) VVh) < Ch Iu |W2,p(Q)lVhlW q(n) 

TE?9h 

where l/p+l/q=1. 

Proof. First note that Ih(u) is well defined because W2 p(Q) C FO(Q) for 
1 < p < oo. For any T in ghk, we can write 

I V(IT(U)) * VVh dx - 54, T(V(IT(U)) * VVh) 

= IT V(IT(U) - IT(U)) *VVh dx -54, T(V(IT(U) - ( Vu))) 

because V(iT(u)) is a constant vector and each component of the vector func- 
tion VVh is integrated exactly by the quadrature formula: 

VVh E eh, Vvh dx = 4 , T(VVh). 

Now, it can be easily checked that 

154, T(V(IT(U) - T(U)) *VVh)l < C1IIT(U) - T(U)IWi ,P(T)IVhIW1,q(T), 

with a constant C1 independent of the geometry of T. Therefore, 

IT V(IT(u)) 
VVh dx - 

54, T(V(IT(u)) 
VVh) 

< (1 + C1)IIT(u) - T(U)IW1P(T)IVhiWl,q(T)T 

On one hand, as Sh is regular, Theorem 6 applied with 1 = 2 implies that 

A(u) - UIWIlP(T) < C2hTTIuIW2P(T), 

with a constant C2 independent of the geometry of T. On the other hand, a 
standard result of finite element interpolation yields (cf. Ciarlet [2]) 

IIT(U) - UIWlP(T) < C3hTlUlW2,P(T), 

whence the desired result. 5 

The operator 4T plays a crucial part in this proof. If V(41(u)) were not 
constant, the same estimate for the quadrature error would require that the 
derivative of the Jacobian JF be small with respect to h2. This holds if T is 
nearly a parallelogram but not if T is an arbitrary quadrilateral. 

This proof has been written in the particular case where k = 1, because 
finite elements of degree one are most commonly used in practice, but clearly, 
the above result extends readily to finite elements of degree k and the same 
type of integration formulas of order k. 
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